Inclusions of HFFs and quantum groups characterised by quantum phases q= exp(i2pi/n) are very interesting and quantum Pascal triangle is characterised by such a phase and gives quantum variant of binomial coefficient as a result. One can imagine quantum variants for integers characterising all kinds of combinatorial objects: Do quantum variants of objects make sense in some sense? Probably some mathematicians has pondered also this question.
Only few days ago I realised that in order to have "quantum quantum theory" as a tool to describe finite measurement resolution, it is better to have quantum variants of fermionic quantum anti-commutation relations for the induced spinors. They have been formulated as I learned in five minutes from web.
These anticommutation relations however demand 2-D space/space-time! But just the well-definedness of em charge almost-forces 2-D string world sheets! And number theoretic arguments removes the "almost". In 4-D Minkowski space-time you do not get them!
In over-optimistic mood - officially allowed at morning hours - I can therefore conclude that the observation of anyons in condensed matter systems (assigned with 2-D boundaries) serves as a direct evidence for the localisation of induced spinors at 2-D surfaces and for large h_eff. I must however assume that also partonic 2-surfaces carry them- whether it is so has been an open question for a long time.
Título : Hawking Radiation 4
EAN : 9783592132250
Editorial : Lighthouse Books for Translation and Publishing.
El libro electrónico Hawking Radiation 4 está en formato ePub
¿Quieres leer en un eReader de otra marca? Sigue nuestra guía.
Puede que no esté disponible para la venta en tu país, sino sólo para la venta desde una cuenta en Francia.
Si la redirección no se produce automáticamente, haz clic en este enlace.
Conectarme
Mi cuenta