Las herramientas de aprendizaje automático están siendo muy utilizadas por sus buenas aproximaciones al predecir el rendimiento académico de los estudiantes. Se analiza información de la última década con el objetivo de identificar los factores que influyen sobre el rendimiento académico en el nivel superior, a partir de modelos realizados por medio de técnicas de aprendizaje automático. Se plantea una clasificación en factores académicos, sociodemográficos, de aprendizaje en línea, de gestión académica, psicosocial y de entorno académico. También se identifican los algoritmos más usados en su predicción.
Adicionalmente, la detección de las variables que más influyen en el fenómeno permitirá implementar algoritmos de Machine Learning pertenecientes a otras ramas de este campo. Así pues, al ahondar un poco más sobre la aplicación de herramientas de Machine Learning en educación superior, este trabajo servirá a docentes e investigadores que deseen investigar estos temas.
Seguir leyendoexpand_more
Título : Machine Learning aplicado al rendimiento académico en educación superior: factores, variables y herramientas
EAN : 9789587875188
Editorial : Siglo del Hombre Editores S.A
Fecha de publicación
: 11/4/23
Formato : ePub
Tamaño del archivo : 12.12 mb
Protección : CARE
El libro electrónico Machine Learning aplicado al rendimiento académico en educación superior: factores, variables y herramientas está en formato ePub
protegido por CARE
- check_circle
Este eBook es compatible para su lectura en la aplicación Vivlio de iOs y Android.
- check_circle
Este eBook es compatible para leer en My Vivlio.
- check_circle
Este eBook es compatible para su lectura en el lector Vivlio.
- check_circle
Este eBook es compatible para su lectura en un e-reader Vivlio.
¿Quieres leer en un eReader de otra marca? Sigue
nuestra guía.
Conectarme
Mi cuenta